Last updated: 2025-03-27

Checks: 6 1

Knit directory: hruban_wflow/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has staged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20250319) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 6dc79eb. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    code/rlucas/.DS_Store

Untracked files:
    Untracked:  README.Rmd
    Untracked:  data/120122_mutations.csv
    Untracked:  data/CA199.csv
    Untracked:  data/CP_PAC_artemis.xlsx
    Untracked:  data/CheckPAC_clinical_annotated011622.xlsx
    Untracked:  data/Checkpac_Test.csv
    Untracked:  data/Expected.csv
    Untracked:  data/ID_comparison.xlsx
    Untracked:  data/Locked_Models/
    Untracked:  data/PACTO Masterfile.xlsx
    Untracked:  data/PACTO_BL_EOT_EOS_PFS_TA_jh.xlsx
    Untracked:  data/Test_set_pacto.csv
    Untracked:  data/allfeatures_pacto.5mb.hg19.csv
    Untracked:  data/artemis.csv
    Untracked:  data/barv1.csv
    Untracked:  data/cellularity.csv
    Untracked:  data/checkpac_5mb_bins/
    Untracked:  data/checkpac_baseline_p2_dates.csv
    Untracked:  data/checkpac_bins.csv
    Untracked:  data/checkpac_ca199.csv
    Untracked:  data/checkpac_ca199_baseline_p4_dates.csv
    Untracked:  data/checkpac_features.csv
    Untracked:  data/checkpac_plasma_manifest.xlsx
    Untracked:  data/clinical_073123.xlsx
    Untracked:  data/combined_bins_102324.rds
    Untracked:  data/df_results_CAIRO5_2_6_ checkpac_ pacto.tsv
    Untracked:  data/estimates/
    Untracked:  data/fig2c_p2_data.rds
    Untracked:  data/for_leal_plot_042324.xlsx
    Untracked:  data/fp2_lucas_healthy.csv
    Untracked:  data/i07_input.xlsx
    Untracked:  data/loadings.rds
    Untracked:  data/long_bins.csv
    Untracked:  data/pacto_5mb_bins/
    Untracked:  data/pacto_bins.csv
    Untracked:  data/pacto_features.csv
    Untracked:  data/sel_chr.txt
    Untracked:  data/supplementary_tables.xlsx
    Untracked:  data/tumor_tmb.txt
    Untracked:  extdata/
    Untracked:  output/process_tcga_beta.Rmd/

Unstaged changes:
    Modified:   .gitignore
    Modified:   README.md

Staged changes:
    Modified:   analysis/about.Rmd
    New:        analysis/ext-fig1.Rmd
    New:        analysis/ext-fig10.Rmd
    New:        analysis/ext-fig11.Rmd
    New:        analysis/ext-fig12.Rmd
    New:        analysis/ext-fig13.Rmd
    New:        analysis/ext-fig14.Rmd
    New:        analysis/ext-fig15.Rmd
    New:        analysis/ext-fig16a.Rmd
    New:        analysis/ext-fig16b.Rmd
    New:        analysis/ext-fig17.Rmd
    New:        analysis/ext-fig18.Rmd
    New:        analysis/ext-fig19.Rmd
    New:        analysis/ext-fig20.Rmd
    New:        analysis/ext-fig21a.Rmd
    New:        analysis/ext-fig21b.Rmd
    New:        analysis/ext-fig22a.Rmd
    New:        analysis/ext-fig22b.Rmd
    New:        analysis/ext-fig23a.Rmd
    New:        analysis/ext-fig23b.Rmd
    New:        analysis/ext-fig24.Rmd
    New:        analysis/ext-fig2a.Rmd
    New:        analysis/ext-fig2b.Rmd
    New:        analysis/ext-fig3.Rmd
    New:        analysis/ext-fig4.Rmd
    New:        analysis/ext-fig5.Rmd
    New:        analysis/ext-fig6.Rmd
    New:        analysis/ext-fig7.Rmd
    New:        analysis/ext-fig8.Rmd
    New:        analysis/ext-fig9.Rmd
    New:        analysis/fig1a.Rmd
    New:        analysis/fig1b.Rmd
    New:        analysis/fig2a.Rmd
    New:        analysis/fig2b.Rmd
    New:        analysis/fig2c.Rmd
    New:        analysis/fig3a.Rmd
    New:        analysis/fig3b.Rmd
    New:        analysis/fig4.Rmd
    New:        analysis/fig5.Rmd
    New:        analysis/fig6a.Rmd
    New:        analysis/fig6b.Rmd
    New:        analysis/fig6c.Rmd
    New:        analysis/fig7a.Rmd
    New:        analysis/fig7b.Rmd
    New:        analysis/fig8.Rmd
    New:        analysis/fig9a.Rmd
    New:        analysis/fig9b.Rmd
    Modified:   analysis/index.Rmd
    Modified:   analysis/license.Rmd
    New:        code/functions.R
    New:        code/hr_plot_funcs.R
    New:        code/liver.tools/DESCRIPTION
    New:        code/liver.tools/NAMESPACE
    New:        code/liver.tools/R/functions.R
    New:        code/liver.tools/R/help.R
    New:        code/liver.tools/man/liver.tools.Rd
    New:        code/liver.tools/zzz.R
    New:        code/pivot_wider_pacto.R
    New:        code/process_ab.Rmd
    New:        code/process_tcga_beta.Rmd
    New:        code/rlucas/DESCRIPTION
    New:        code/rlucas/NAMESPACE
    New:        code/rlucas/R/functions.R
    New:        code/rlucas/R/help.R
    New:        code/rlucas/data-derived/SummarizedExperiment.R
    New:        code/rlucas/data/lucas_5mb.rda
    New:        code/rlucas/data/metadata.rda
    New:        code/rlucas/data/prediction_lucas.rda
    New:        code/rlucas/data/se.rda
    New:        code/rlucas/data/valid_metadata.rda
    New:        code/rlucas/inst/extdata/survival_analysis_samples.xlsx
    New:        code/rlucas/man/rlucas.Rd
    New:        code/useful.stuff.aa/DESCRIPTION
    New:        code/useful.stuff.aa/NAMESPACE
    New:        code/useful.stuff.aa/R/convenience.R
    New:        code/useful.stuff.aa/R/models.R
    New:        code/useful.stuff.aa/data/liver_meta.rda
    New:        code/useful.stuff.aa/data/lucas_meta.rda
    New:        code/utility_funcs.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Multivariate cox proportional hazard analyses were generated for DELFI-TF and fit to overall survival adjusting for clinical subgroups. Each of the indicated subgroups that have been shown to be significant on univariate analyses in previous studies(7) have been included in the multivariate analysis. Hazard ratios and P values are indicated on the right for individuals in the CheckPAC study

library(here)
library(readxl)
library(survival)
source(here("code/hr_plot_funcs.R"))
baseline_c <- read_excel("data/CheckPAC_clinical_annotated011622.xlsx") %>%
  select(subject_id = StudySubjectID,
         age,
         weightloss5_yn = weighttloss5_yn,
         ecog_ps = PS_cycle1,
         bor = `Best overall confirmed response (RECIST)`,
         ca199 = LAB_CA199_E1_C4,
         crp = LAB_CRP_E1_C4,
         bilirubin = LAB_Bilirubin_E1_C4,
         albumin = LAB_Albumin_E1_C4) %>%
  mutate(mgps = case_when(crp <= 10 ~ 0,
                          crp > 10 & albumin >= 35 ~ 1,
                          crp > 10 & albumin < 35 ~ 2))
long_c <- read_excel("data/clinical_073123.xlsx") %>%
  select(subject_id = StudySubjectID,
         arm = Arm,
         nivo_start_date = Nivo_StartDate,
         pfs_date = PFS_date,
         surv_date = Survival_date,
         surv_status = Survival_status) %>%
  mutate(surv_status = case_when(surv_status == 2 ~ "Dead",
                                 surv_status == 1 ~ "Alive"),
         arm = factor(arm))
clin_c <- inner_join(baseline_c, long_c, by = "subject_id")

# Fix the date formats
for (i in colnames(clin_c)) {
  if (str_detect(i, "[Dd]ate")) {
    if (!any(class(clin_c[[i]]) == "POSIXt")) {
      clin_c[[i]] <- as.Date(as.numeric(clin_c[[i]]), origin = "1899-12-30")
    } else {
      clin_c[[i]] <- as.Date(clin_c[[i]])
    }
  }
}

# Compute overall and progression-free survival time
surv_c <- clin_c %>%
  mutate(pfs = as.numeric(difftime(pfs_date, nivo_start_date)),
         os = as.numeric(difftime(surv_date, nivo_start_date))) %>%
  mutate(death = ifelse(surv_status == "Dead", 1, 0))
# Load the DELFI TF scores
delfi_tf <- read_delim("data/df_results_CAIRO5_2_6_ checkpac_ pacto.tsv") %>%
  setNames(c("indx", "id", "score")) %>%
  select(-indx)
New names:
Rows: 422 Columns: 3
── Column specification
──────────────────────────────────────────────────────── Delimiter: "\t" chr
(1): sample_id dbl (2): ...1, DELFI_TF_CAIRO5_2.6
ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
Specify the column types or set `show_col_types = FALSE` to quiet this message.
• `` -> `...1`
# Select baseline and two-week visit timepoints
blood_draw_c <- read_excel("data/checkpac_plasma_manifest.xlsx") %>%
  select(cgid = `Sample ID*`, patient_id = Patient, date_blood_draw = Date) %>%
  mutate(date_blood_draw = as.Date(date_blood_draw))
# See "/dcs05/scharpf/data/skoul/Projects/checkpac/patient_selection" for more
# information
blood_draw_c[blood_draw_c$cgid == "CGPLPA223P16",
             "date_blood_draw"] <- as.Date("2019-12-20")
blood_draw_c[blood_draw_c$cgid == "CGPLPA794P4",
             "date_blood_draw"] <- as.Date("2020-02-21")
blood_draw_bl_or_p2_c <- blood_draw_c %>%
  mutate(visit = str_extract(cgid, "(?<=CG[A-Z]{1,5}[0-9]{1,5}P).*"),
         visit = sapply(visit, function(x) str_split(x, "_")[[1]][1])) %>%
  filter(visit == "" | visit == "2")
blood_draw_bl_and_p2_c <- blood_draw_bl_or_p2_c %>%
  filter(patient_id %in% pull(filter(count(group_by(blood_draw_bl_or_p2_c,
                                                    patient_id)),
                                     n > 1),
                              patient_id))

# Join the scores with timepoint
delfi_tf_blp2_c <- inner_join(delfi_tf, blood_draw_bl_and_p2_c,
                              by = join_by(id == cgid)) %>%
  mutate(visit = ifelse(visit == "", "baseline", "ontreatment"))
exclude_c <- c("CGPLPA225", "CGPLPA783", "CGPLPA795")
id_map_c <- read_excel("data/ID_comparison.xlsx") %>%
  filter(!unlist(lapply(CGID, function(x) any(str_detect(x, exclude_c))))) %>%
  select(patient_id = CGID, subject_id = StudySubjectID) %>%
  mutate(patient_id = substring(patient_id, 1, 9))

surv_delfi_tf_c <- surv_c %>%
  inner_join(id_map_c) %>%
  inner_join(delfi_tf_blp2_c) %>%
  select(subject_id, patient_id, score,
         arm, ca199, bilirubin, age, mgps, ecog_ps, weightloss5_yn, visit,
         pfs, os, death) %>%
  pivot_wider(names_from = visit, values_from = score) %>%
  mutate(bilirubin_bin = bilirubin > 25,
         age_bin = age <= 65,
         mgps_bin = factor(mgps, levels = c(0, 1, 2)),
         ecog_ps_bin = ecog_ps == 1,
         ca199_bin = ca199 > 37,
         weightloss5_yn_bin = weightloss5_yn == 1)
Joining with `by = join_by(subject_id)`
Joining with `by = join_by(patient_id)`
# Data for fitting the models
surv_data <- surv_delfi_tf_c %>%
  mutate(pch = (ontreatment - baseline) / baseline,
         pch_gt0 = ifelse(pch > 0, "NR", "R"),
         baseline_std = scale(baseline, center = TRUE, scale = TRUE),
         ontreatment_std = scale(ontreatment, center = TRUE, scale = TRUE))
covar_labels <- c("Age, years",
                  "> 65",
                  "\u2264 65",
                  "ECOG PS",
                  "0",
                  "1",
                  "Weight loss, %",
                  "< 5",
                  "\u2265 5",
                  "MGPS",
                  "0",
                  "1",
                  "2",
                  "Treatment",
                  "RT+Nivo",
                  "RT+Nivo/Ipi")

# Inc-dec model
var_labels <- c("DELFI TF",
                "Non-responder",
                "Responder")

# Fit overall survival to inc-dec Delfi TF values
mf <- coxph(Surv(os, death) ~ age_bin + ecog_ps_bin + weightloss5_yn_bin +
              mgps_bin + arm + pch_gt0, surv_data)
cox_os <- get_hr_tbl(surv_data, mf)
print(plot_hr(cox_os, var_labels = c(covar_labels, var_labels)))
Warning: Removed 7 rows containing missing values or values outside the scale range
(`geom_point()`).
Warning: Removed 20 rows containing missing values or values outside the scale range
(`geom_point()`).

# Fit progression-free survival to inc-dec Delfi TF values
mf <- coxph(Surv(pfs, death) ~ age_bin + ecog_ps_bin + weightloss5_yn_bin +
              mgps_bin + arm + pch_gt0, surv_data)
cox_pfs <- get_hr_tbl(surv_data, mf)
print(plot_hr(cox_pfs, var_labels = c(covar_labels, var_labels)))

sessionInfo()
R version 4.4.1 (2024-06-14)
Platform: aarch64-apple-darwin20
Running under: macOS 15.3.1

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] patchwork_1.3.0 lubridate_1.9.4 forcats_1.0.0   stringr_1.5.1  
 [5] dplyr_1.1.4     purrr_1.0.4     readr_2.1.5     tidyr_1.3.1    
 [9] tibble_3.2.1    ggplot2_3.5.1   tidyverse_2.0.0 survival_3.8-3 
[13] readxl_1.4.5    here_1.0.1      workflowr_1.7.1

loaded via a namespace (and not attached):
 [1] gtable_0.3.6      xfun_0.51         bslib_0.9.0       processx_3.8.6   
 [5] lattice_0.22-6    callr_3.7.6       tzdb_0.4.0        vctrs_0.6.5      
 [9] tools_4.4.1       ps_1.9.0          generics_0.1.3    parallel_4.4.1   
[13] pkgconfig_2.0.3   Matrix_1.7-3      lifecycle_1.0.4   compiler_4.4.1   
[17] farver_2.1.2      git2r_0.35.0      munsell_0.5.1     getPass_0.2-4    
[21] httpuv_1.6.15     htmltools_0.5.8.1 sass_0.4.9        yaml_2.3.10      
[25] crayon_1.5.3      later_1.4.1       pillar_1.10.1     jquerylib_0.1.4  
[29] whisker_0.4.1     cachem_1.1.0      tidyselect_1.2.1  digest_0.6.37    
[33] stringi_1.8.4     labeling_0.4.3    splines_4.4.1     rprojroot_2.0.4  
[37] fastmap_1.2.0     grid_4.4.1        colorspace_2.1-1  cli_3.6.4        
[41] magrittr_2.0.3    withr_3.0.2       scales_1.3.0      promises_1.3.2   
[45] bit64_4.6.0-1     timechange_0.3.0  rmarkdown_2.29    httr_1.4.7       
[49] bit_4.6.0         cellranger_1.1.0  hms_1.1.3         evaluate_1.0.3   
[53] knitr_1.49        rlang_1.1.5       Rcpp_1.0.14       glue_1.8.0       
[57] rstudioapi_0.17.1 vroom_1.6.5       jsonlite_1.9.1    R6_2.6.1         
[61] fs_1.6.5